skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ray, Eric"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Climate models predict that the Brewer–Dobson circulation (BDC) will accelerate due to tropospheric warming, leading to a redistribution of trace gases and, consequently, to a change of the radiative properties of the atmosphere. Changes in the BDC are diagnosed by the so-called “age of air”, that is, the time since air in the stratosphere exited the troposphere. These changes can be derived from a long-term observation-based record of long-lived trace gases with increasing concentration in the troposphere, such as sulfur hexafluoride (SF6). The Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) provides the longest available continuous time series of vertically resolved SF6 measurements, spanning 2004 to the present. In this study, a new age-of-air product is derived from the ACE-FTS SF6 dataset. The ACE-FTS product is in good agreement with other observation-based age-of-air datasets and shows the expected global distribution of age-of-air values. Age of air from a chemistry–climate model is evaluated, and the linear trend of the observation-based age of air is calculated in 12 regions within the lower stratospheric midlatitudes (14–20 km, 40–70°) in each hemisphere. In 8 of 12 regions, there was not a statistically significant trend. The trends in the other regions, specifically 50–60 and 60–70° S at 17–20 km and 40–50° N at 14–17 and 17–20 km, are negative and significant to 2 standard deviations. This is therefore the first observation-based age-of-air trend study to suggest an acceleration of the shallow branch of the BDC, which transports air poleward in the lower stratosphere, in regions within both hemispheres. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. null (Ed.)
    Abstract. We introduce a transformed isentropic coordinate Mθe,defined as the dry air mass under a given equivalent potential temperaturesurface (θe) within a hemisphere. Like θe, thecoordinate Mθe follows the synoptic distortions of theatmosphere but, unlike θe, has a nearly fixedrelationship with latitude and altitude over the seasonal cycle. Calculationof Mθe is straightforward from meteorological fields. Usingobservations from the recent HIAPER Pole-to-Pole Observations (HIPPO) and Atmospheric Tomography Mission (ATom) airborne campaigns, we map theCO2 seasonal cycle as a function of pressure and Mθe, whereMθe is thereby effectively used as an alternative tolatitude. We show that the CO2 seasonal cycles are more constantas a function of pressure using Mθe as the horizontal coordinatecompared to latitude. Furthermore, short-term variability inCO2 relative to the mean seasonal cycle is also smaller when the dataare organized by Mθe and pressure than when organized by latitudeand pressure. We also present a method using Mθe to computemass-weighted averages of CO2 on a hemispheric scale. Using this methodwith the same airborne data and applying corrections for limited coverage,we resolve the average CO2 seasonal cycle in the Northern Hemisphere(mass-weighted tropospheric climatological average for 2009–2018), yieldingan amplitude of 7.8 ± 0.14 ppm and a downward zero-crossing on Julianday 173 ± 6.1 (i.e., late June). Mθe may be similarlyuseful for mapping the distribution and computing inventories of anylong-lived chemical tracer. 
    more » « less